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Figure 1: OPTCTRLPOINTS, a data-driven method to search for the optimal set of control points, enables accurate replication of the possible variations
of a shape through biharmonic deformation. In contrast to control points obtained through Farthest Point Sampling, the control points discovered by
OPTCTRLPOINTS are strategically positioned, such as at the knees (see the red arrows in the black boxes), resulting in a superior fit of the template to the
targets during deformation.

Abstract

We propose OPTCTRLPOINTS, a data-driven framework designed to identify the optimal sparse set of control points for
reproducing target shapes using biharmonic 3D shape deformation. Control-point-based 3D deformation methods are widely
utilized for interactive shape editing, and their usability is enhanced when the control points are sparse yet strategically
distributed across the shape. With this objective in mind, we introduce a data-driven approach that can determine the most
suitable set of control points, assuming that we have a given set of possible shape variations. The challenges associated with this
task primarily stem from the computationally demanding nature of the problem. Two main factors contribute to this complexity:
solving a large linear system for the biharmonic weight computation and addressing the combinatorial problem of finding the
optimal subset of mesh vertices. To overcome these challenges, we propose a reformulation of the biharmonic computation that
reduces the matrix size, making it dependent on the number of control points rather than the number of vertices. Additionally,
we present an efficient search algorithm that significantly reduces the time complexity while still delivering a nearly optimal
solution. Experiments on SMPL, SMAL, and DeformingThings4D datasets demonstrate the efficacy of our method. Our control
points achieve better template-to-target fit than FPS, random search, and neural-network-based prediction. We also highlight the
significant reduction in computation time from days to approximately 3 minutes.

CCS Concepts
• Computing methodologies → Mesh models; Mesh geometry models; Shape analysis;

1. Introduction

The demand for high-quality 3D models is growing rapidly, espe-
cially with recently emerging applications in virtual and augmented

* denotes equal contribution.

realities, gaming, robotics, animation, etc. However, creating and
designing high-quality 3D models is a tedious and difficult process
even for expert designers. Shape deformation is thus an important
technique that enables producing plausible variations of existing
high-quality, artist-generated 3D assets.
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Deforming a 3D model is, however, a highly non-trivial task. A
straightforward approach is to parameterize deformation as positions
of all the mesh vertices [GFK∗19, SJA∗20, WCMN19], although it
is difficult for users to edit the shape and also can lead to unrealistic
outputs due to its large degree of freedom. To circumvent this conun-
drum, existing works in geometry processing [JBPS11, WJBK15,
LLCO08,JSW05,JMD∗07,HS08,WBGH11,LH13,WSLG07,BP07]
leverage a sparse set of deformation handles to constrain and param-
eterize deformation within a lower degree of freedom, facilitating
more intuitive editing via interactions with the users.

For handle-based deformation to be effective and useful, there
are several desirable properties, such as identity (i.e. preserving the
shape under zero handle movement), locality, smoothness, closed-
form expression, and flexibility for the representation of shapes.
Due to such desirable properties, many existing deformation meth-
ods [JBPS11, WJBK15] use a set of points or regions in the mesh,
which is typically a subset of the mesh vertices, as the handles
(Fig. 1) while defining the shape deformation function from the
handles using biharmonic weights. Given any input shape, point
and region handles can be directly selected, and their biharmonic
weights can also be directly computed, offering flexibility and con-
venience. This is in contrast to other types of deformation handles,
such as cages [LLCO08, JSW05, JMD∗07, HS08, WBGH11, LH13]
and skeletons [WSLG07,BP07]. Cages require the manual construc-
tion of a closed polyhedral envelope for the shapes, while skeletons
require rigging, where the skeleton structure needs to be delicately
constructed to produce detailed deformation and typically necessi-
tate manual weight painting.

Given a mesh and a sparse subset of the mesh vertices represent-
ing the control points, the biharmonic weights defining the linear
map from the control point positions to the mesh vertex positions
are calculated by solving a convex quadratic optimization prob-
lem [JBPS11], which was shown to be equivalent to solving a linear
system [WJBK15] when relaxing some constraints. To obtain a wide
range of plausible variations of the shape from a sparse set of control
points, it is crucial to find the optimal set of control points. For an
articulated 3D shape, for instance, the control points near the joints
would be able to produce more realistic deformations by bending
the joints properly (see control points at knees on the left of Fig. 1).
Also, more control points would be needed in the regions with more
detailed variations (see the additional control points on the leg on
the right of Fig. 1).

In this work, we present a data-driven method for finding the
optimal set of control points, coined OPTCTRLPOINTS. Given a
template mesh and its variant shapes (e.g. different poses in an
animation), we find the ideal subset of the template mesh vertices
as control points that can best fit the template to all the variant
shapes via deformation. Our method can thus provide optimized
deformation handles to the users and enables easier shape editing.
In contrast to previous works [YAK∗20, JTM∗20] that utilize neural
networks to learn deformation handles in a data-driven manner, our
approach focuses on discovering a set of control points rather than
fitting a sphere cage to the template mesh. The limitation of using a
sphere cage is that it is unable to accommodate large deformations,
making it unsuitable for non-rigid shapes like human or animal

bodies. By identifying control points instead, our method enables
more flexible and effective deformation modeling for such shapes.

Finding the optimal set of vertices poses a challenge due to the
substantial amount of computation time involved, which can span
several hours or more than a day. Two primary factors contribute to
this extended computation duration. Firstly, the process of deforming
the template mesh to accurately align with the target shapes is
time-consuming. While deforming the mesh using fixed biharmonic
weights can be performed quickly by prefactorizing a matrix within a
linear system, the need to test different sets of control points prevents
prefactorization of the matrix, leading to a considerably slower
process. Secondly, solving a combinatorial optimization problem
to determine the ideal subset of vertices becomes intractable when
dealing with thousands or more vertices. When N is the number of
vertices and K is the number of control points, a straightforward
exhaustive search requires a time complexity of O(NK), further
contributing to the computational challenges.

To overcome these challenges and address the issue of intractable
computation, we propose a novel algorithm that incorporates two
key ideas. Firstly, we introduce a reformulation of the biharmonic
weight computation, which significantly reduces the time required to
solve the linear system. This is achieved by introducing a new linear
system where the size of the matrix is not dependent on the number
of vertices N, but rather on the number of control points K. This
reformulation proves particularly effective in cases where the set
of control points varies, as in our scenario where we search for the
best set. Additionally, we present an efficient search algorithm that
leverages the new biharmonic weight computation. This algorithm
operates by iteratively updating control points one by one while
simultaneously traversing local partitioned regions for each control
point. This simple yet effective approach enables us to reduce the
time complexity from O(NK) to Θ(N +K2), which is linear order
of the number of the vertices while still providing a nearly optimal
solution.

In our experiments, we assess the performance of our method by
evaluating the alignment of the template to the target through defor-
mation, comparing it with other baselines: Farthest Point Sampling
(FPS), random search, and KeypointDeformer [JTM∗20], a neural-
network-based method for predicting keypoints for deformation.
We conduct these evaluations on three datasets: SMPL [LMR∗15],
SMAL [ZKJB17], and DeformingThings4D [LTT∗21]. Our results
demonstrate that the control points discovered by our OPTCTRL-
POINTS algorithm offer a better fit of the template to the target
shapes, thanks to their ideal locations for producing the desired vari-
ations. Additionally, our approach significantly reduces computation
time, especially when compared to random search. In approximately
3 minutes, our method can find a good set of control points, whereas
without the new biharmonic weight formulation and efficient search,
it would take days to achieve a similar outcome. Furthermore, with
the DeformingThings4D [LTT∗21] dataset, we illustrate that our
data-driven control point search method can discover an optimized
set of control points tailored to the given set of target shapes. We
conduct experiments using two setups: targeting all motions or fo-
cusing on a specific motion within the animations. The consistent
lower fitting errors observed in the specific motion case compared
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to the all motion case highlight the effectiveness of our data-driven
approach.

2. Related work

2.1. 3D Shape Deformation

3D shape deformation has been a long-standing problem in com-
puter graphics and geometry processing. The problem is to find
the best vertex positions for a given mesh in order to obtain a new
shape that best fits a target while preserving the local geometric
details of the original shape. Previous approaches include free-form
deformation [KSSCO06, SP86] that define a smooth deformation
function by interpolating the weights of the voxel grids enclosing
the surface, and vertex-based approaches [SCOL∗04, IMH05, SA07,
LSC∗04, LSLCO05] where vertex positions are directly optimized
through a target-fitting objective function. Regularization losses are
also used, such as mesh Laplacian [SCOL∗04, LSC∗04] and local
rigidity [LSLCO05, IMH05,SA07] to preserve the geometric details
of the original shape. Learning-based approaches have also been
introduced for both free-form [YM16, HFW∗18, JPS∗18, KJG∗18]
and vertex-based [GFK∗19, WCMN19] deformation approaches.
More recently, neural implicit functions [DYT21, ZYDL21] explore
defining the deformation offset on the full coordinate space, instead
of only on the surface of the mesh. These works, however, may lead
to unrealistic outputs due to their large degrees of freedom and also
do not exert intuitive control over the shape, as editing operations
are performed in the implicit space.

2.2. Traditional Handle-based Shape Deformation

Deformation handles are commonly used to address the need for low-
dimensional control on shape deformation and have been well stud-
ied in the computer graphics literature [SB09]. Earlier works use vol-
umetric prisms [BPGK06, BS08] or off-surface handles [BPWG07]
to compute detail-preserving shape deformation through variational
methods. These variational methods typically require optimization at
each time of deformation. Cage [JSW05, JMD∗07,HS08,WBGH11,
LH13, LLCO08] is another form of shape handles where a shape
is enclosed in a coarse polytope, and the mesh vertices are defined
as a linear combination of the cage vertices through generalized
barycentric coordinates. Skeletons [WSLG07, BP07] also define a
linear map from the joints and bones to the mesh vertices via linear
blend skinning, while now the handles appear inside the shape. Both
cages and skeletons allow for shape deformation to be expressible in
a closed form, but require manual construction of the source cage or
rigging. Jacobson et al. [JBPS11] introduced a handle-based defor-
mation function based on solving the biharmonic equation over the
mesh surface with boundary constraints that can use a set of points
or regions in the mesh as handles to define shape deformation using
biharmonic weights. Unlike cages and skeletons, these handles can
directly be computed for any source shape and are thus flexible
and versatile. Wang et al. [WJBK15] then introduced a closed-form
formulation to the original constrained quadratic optimization formu-
lation. In our method, we leverage this versatile deformation handle
with an efficient reformulation to enable tractable gradient-based
optimization for handle discovery, in contrast to existing works that
assume shape handles to be given.

2.3. Learning Handle-based Shape Deformation

Recently, handle-based shape deformations have been revisited in
the context of deep learning. DeformSyncNet [SJA∗20] uses rigid
bounding boxes as shape handles for learning a latent shape differ-
ence deformation space. Wang et al. [YAK∗20] introduced Neural
Cages, a neural network for cage-based deformations that predicts
a source-dependent cage used to deform a source shape to match a
given target. KeypointDeformer [JTM∗20] leverages Neural Cages
to learn keypoints that can be used for deformation. However, the
degree of plausible output shape deformations yielded by the neural
cage-based deformation methods is limited since they start from a
sphere-based cage, making highly non-rigid deformations on non-
sphere-like shapes difficult. In contrast, we leverage a deformation
function defined with biharmonic coordinates that enable flexibility
for any given source shape. Liu et al. [LSMS21] also use bihar-
monic coordinates as their deformation function. In contrast to our
work, where the goal is the discovery of the control points, they
assume them to be given and instead learn a latent space of meta-
handles for the given set of control points. Moreover, we discover
explicit handles, which are 3D mesh vertices, that allow direct user
interpretability and controllability, instead of meta-handles in latent
space.

3. Background

3.1. Shape Deformation and Deformation Handles

The creation of high-quality 3D models is a tedious process that
requires manual expertise, thus making shape deformation an im-
portant task as it enables converting an existing 3D model to a new
shape while preserving their fine details. However, naive mesh defor-
mation through moving individual mesh vertices is cumbersome as
it is both difficult for users and can easily lead to unrealistic outputs.
Existing work [JBPS11,WJBK15,LLCO08,JSW05,JMD∗07,HS08,
WBGH11, LH13, WSLG07, BP07] thus introduce intuitive deforma-
tion handles, e.g. control points, cages, skeletons, etc., to constrain
and parameterize deformation with a low degree of freedom. Several
properties are critical for handle-based deformation to be effective
and useful:

1. Identity: The original shape must be reconstructed under zero
movement of shape handles.

2. Locality: The deformation produced by each individual handle
must be local and smooth.

3. Closed-form: The output deformed shape must be expressed
in a closed-form given the transformations of the deformation
handles.

4. Flexibility: The deformation handles and function must be de-
fined without any constraints or additional information about the
shape (e.g., a cage, a skeleton, or bounding primitives).

For these reasons, many existing shape deformation meth-
ods [LSMS21,LSKK22,JBPS11,WJBK15] use biharmonic weights
as the deformation function. Jacobson et al. [JBPS11] first intro-
duced bounded biharmonic coordinates that solve biharmonic equa-
tions defined over a mesh to compute the linear map from the han-
dles to the mesh vertices. Wang et al. [WJBK15] later introduced a
closed-form formulation for the biharmonic coordinate-based defor-
mation, which we base our work on. Below, we explain the details
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about the closed-form formulation of the biharmonic coordinate
deformation function.

3.2. Biharmonic Coordinates

Given a 3D volumetric mesh with N vertices and K control points,
which is a sparse subset of the mesh vertices (K ≪ N) represented
with a binary selector matrix S ∈ {0,1}K×N , the biharmonic defor-
mation function [JBPS11,WJBK15] from the positions of the control
points C ∈ RK×3 to the positions of mesh vertices V ∈ RN×3 is
defined as a linear function: V = WC. (The original biharmonic
deformation [JBPS11, WJBK15] supports region handles, while we
limit our scope to point handles for simplicity.) Here, W ∈ RN×K

called biharmonic weights is derived from the solution of the fol-
lowing optimization for the vertex positions V with respect to the
equality constraints on the control point positions:

V = argmin
X∈RN×3

1
2

trace
(

X⊤AX
)

subject to SX = C, (1)

where A ∈ RN×N denotes the discrete Bilaplacian matrix of the
mesh. This optimization finds the positions of the mesh vertices
V minimizing squared Laplacian energy when the positions of the
selected control points are fixed to be C. Since the Bilaplacian matrix
A is positive semi-definite, the optimization is a convex quadratic
programming problem that can be solved as a linear system as
described in [WJBK15]. The solution thus has a form of V = WC
where

W(S;A) = S⊤−T⊤
(

TAT⊤
)−1

TAS⊤, (2)

and T ∈ {0,1}(N−K)×N is the complementary selector matrix of S
indicating the mesh vertices that are not selected as control points.
By the definition of the Bilaplacian matrix A including the original
positions of the vertices V in its null space, the given pose of the
mesh V becomes the solution of the optimization when the control
points are not moved (C = SV), satisfying the identity condition.

To leverage the expressivity of biharmonic coordinates for shape
deformation, we need to find the optimal set of control points (a
sparse subset of the mesh vertices) that allows us to achieve a wide
variety of plausible variants. In what follows, we introduce our
data-driven approach of finding the optimal set of control points
efficiently given possible variants of the shape.

4. OptCtrlPoints

4.1. Problem Definition

Given a template volumetric mesh with N vertices which Bilaplacian
matrix is A ∈ RN×N , and a set of M target shapes {Xi}M

i=1 that are
the possible variants of the template, our goal is to find the optimal
K-subset of the N source vertices as the control points, denoted as
S̃ ∈ {0,1}K×N , which can best fit all the target shapes with their
corresponding positions in the target (see Fig. 2):

S̃ = argmin
S∈{0,1}K×N

M

∑
i=1

d(Xi,W(S;A)C(S;Xi))

s.t.
N

∑
j=1

Si j = 1 for all i, (3)

where d(·, ·) is a shape-to-shape distance function, W(S;A) is the
biharmonic weight function in Eq. 2 for the control point selector
matrix S and the given Bilaplacian matrix A, and C(S;Xi) is a
function computing the corresponding positions of the control points
S in the target Xi. Assuming that the point-wise map from each target
shape Xi to the template is given or estimated with an off-the-shelf
shape correspondence method (e.g., functional maps [OBCS∗12],
or its neural variants [LRR∗17, HLR∗19, DSO20, ZQZ∗21, APO21,
MRSHO22]; see a survey [Sah20]), let f : {Xi}M

i=1 →RN×3 denote
a function returning corresponding points of each vertex of the
template in the same order. Then C(S;Xi) = S f (Xi).

The main challenge in finding the optimal K-subset of template
vertices as control points in Eq. 3 lies in the extensive computation
time required. Note that when the control points and resulting bihar-
monic weights are fixed, the deformations can be computed quickly
by prefactorizing TAT⊤ in Eq. 2. However, when computing de-
formations with different sets of control points, it is not feasible
to leverage the prefactorization since the complementary selector
matrix T varies. Consequently, computing the biharmonic weight
matrix W in Eq. 2 becomes the bottleneck, taking several seconds to
compute even once (for detailed analysis, refer to Sec. 5). Moreover,
identifying the optimal K-subset from a pool of N elements is an
NP-complete combinatorial optimization problem, making exhaus-
tive search impractical due to the typically high number of vertices,
often in the thousands.

To address this challenge, we present our efficient control point
search framework, called OPTCTRLPOINTS. First, in Sec. 4.2, we
introduce a reformulation of Eq. 2 that yields the same biharmonic
weight matrix W while solving a linear system on a much smaller
scale, significantly reducing computation time. Second, in Sec. 4.3,
we propose an efficient search algorithm that reduces the time
complexity of the search from O(NK) (for exhaustive search) to
Θ(N +K2) in average, while effectively finding nearly optimal so-
lutions in practice.

4.2. Reformulation of W(S;A) (Eq. 2)

Let M denote the linear system in W(S;A) (Eq. 2):

M =
(

TAT⊤
)−1

TAS⊤. (4)

We begin by introducing a reformulation of M for the case when
A is not a Bilaplacian matrix but rather an arbitrary invertible square
matrix. However, in our specific scenario, A is the Bilaplacian ma-
trix, which is non-invertible and positive-semidefinite. In Section
4.2.1, we elaborate on how we address the singularity of A in this
new formulation.

We choose a permutation matrix P ∈RN×N such that the product
of P with S and T becomes SP =

[
0K×(N−K) | IK×K

]
and TP =[

I(N−K)×(N−K) | 0(N−K)×K

]
, respectively. Moreover, using P, we

define B = P⊤AP and its inverse D = P⊤A−1P as follows:

B =

[
B11 B12
B⊤

12 B22

]
,D =

[
D11 D12
D⊤

12 D22

]
, (5)

where B11,D11 ∈ R(N−K)×(N−K), B12,D12 ∈ R(N−K)×K , and
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Figure 2: Examples of the template and target shapes, along with the fitting results obtained through biharmonic deformations from the template to the target.
The colored points indicate the control points used for the deformation computation. The segmented shapes within the black boxes at the top left corner illustrates
the partitioned volume of the source tetrahedral mesh, enabling a level-of-detail search for the optimal placement of each control point.

B22,D22 ∈ RK×K are block matrices. Now taking into account that
a permutation matrix is an orthogonal matrix (i.e. P−1 = P⊤) and
PP⊤ = I, we can rewrite Eq. 4 as follows:

M =
(

TAT⊤
)−1

TAS⊤

=
(
(TP)

(
P⊤AP

)
(TP)⊤

)−1
(TP)

(
P⊤AP

)
(SP)⊤

=
(
(TP)B(TP)⊤

)−1
(TP)B(SP)⊤

=

([
I 0

][ B11 B12
B⊤

12 B22

][
I
0

])−1

[
I 0

][ B11 B12
B⊤

12 B22

][
0
I

]
= B−1

11 B12.

(6)

By using the Schur complement [Hay68], we can express D, the
inverse of B as follows:

D−1 =

[
D11 D12

D⊤
12 D22

]−1

=

[
B11 B12

B⊤
12 B22

]
, (7)

where

B11 = (D11 −D12D−1
22 D⊤

12)
−1,

B12 =−
(

D11 −D12D−1
22 D⊤

12

)−1
D12D−1

22 , and

B22 = D−1
22 +D−1

22 D⊤
12

(
D11 −D12D−1

22 D⊤
12

)−1
D12D−1

22 .

(8)

Thus, setting Q = D11 −D12D−1
22 D⊤

12, we have B−1
11 = Q and B12 =

−Q−1D12D−1
22 . Hence we get

M = B−1
11 B12 =−D12D−1

22 . (9)

Finally, by considering the orthogonality of the permutation matrix

P and that P⊤ =

[
T
S

]
based on its definition, we can show that

D12 = TA−1S⊤ and that D22 = SA−1S⊤ as follows:

D = P⊤A−1P

=

[
T
S

]
A−1

[
T⊤ | S⊤

]
=

[
TA−1T⊤ TA−1S⊤

SA−1T⊤ SA−1S⊤

]

=

[
D11 D12

D⊤
12 D22·

]
,

(10)

Then, Eq. 9 becomes:

M =−TA−1S⊤
(

SA−1S⊤
)−1

. (11)

By replacing Eq. 11 in our initial expression from Eq. 2, we obtain
the following reformulation:

W(S;A) = S⊤+T⊤
(

TA−1S⊤
(

SA−1S⊤
)−1

)
. (12)

Note that Eq. 12 includes a linear system with a significantly smaller
matrix, SA−1S⊤ ∈ RK×K , where K ≪ N. Also, A−1 can be pre-
computed to speed up the computation at each iteration.

4.2.1. Handling the Singularity of the Bilaplacian Matrix A

The reformulation of M (Eq. 11) cannot be directly used in our case
since the Bilaplacian matrix A is a singular matrix. One possible
approach to handling the singularity of A is to leverage the shaving-
off technique by Jacobson [Jac14] while fixing a single control
point during the control point search. Namely, when rewriting the
optimization problem in Eq. 1 into a system of linear equations as
follows: [

A S⊤

S 0

][
X
Λ

]
=

[
0
C

]
, (13)

where Λ ∈RK is a vector of Lagrange multipliers, and assuming the
fixed control point occupies the last index of vertices without loss of
generality, the matrix on the left side of the linear system can be re-
split in a way to shave off the last row and column of the Bilaplacian
matrix A while expanding the selector matrix S and the zero matrix
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Figure 3: Shaving-off technique handling the singularity of the Bilaplacian
matrix A. When assuming the last vertex is fixed as one of the control points,
we define a new matrix Ã by taking the last row and column from Ã and
also expand the selector matrix S and the zero matrix region. Since the
Bilaplacian matrix is rank N−1, the new matrix Ã has full rank, and thus
the Schur complement trick in Sec. 4.2 can be used.

region, resulting in Ã ∈ R(N−1)×(N−1), S̃ ∈ R(K+1)×(N−1), and
Z̃ ∈ R(K+1)×(K+1) as follows (see Fig. 3):[

Ã S̃⊤

S̃ Z̃

][
X
Λ

]
=

[
0
C̃

]
. (14)

where C̃ ∈ R(K+1)×3 is the concatenation of a zero vector and C ∈
RK×3. Since the Bilaplacian matrix A has rank N −1, Ã obtained
by removing the last row and column of A has full rank. Thus, the
Schur complement trick in Sec. 4.2 can now be directly utilized.
One difference is that the bottom-right block matrix on the left side
of the new linear system is not a zero matrix but Z̃. Hence, Eq. 11
needs to be modified as follows:

M =−T̃Ã−1S̃⊤
(

S̃Ã−1S̃⊤− Z̃
)−1

, (15)

where T̃ ∈ {0,1}(N−K)×(N−1) is the complement of the selector
matrix T without the last column. Note that the last vertex represents
the fixed control point, and thus, the complementary set of the
control point selection in T̃ is not changed. W(S;A) in Eq. 12 is
also reformulated again as follows:

W̃(S;A) = S̃⊤+ T̃⊤
(

T̃Ã−1S̃⊤
(

S̃Ã−1S̃⊤− Z̃
)−1

)
. (16)

The positions of the vertices, excluding the fixed single control point,
can be computed as W̃C̃; note that the position of the control point
is given.

Alternatively, one can simply consider regularizing the Bilapla-
cian matrix A by adding a small-weighted identity matrix (e.g.,
A+εI), approximating the solution while achieving numerical stabil-
ity. In our experiments, we empirically find that this simple approach,
which does not even require fixing any control points, performs well
in practice for identifying the best set of control points. As a result,
we use this regularization approach in our implementation.

4.3. Control Point Search Algorithm

Although the computation of the biharmonic weight matrix W in
Eq. 12 is fast, finding the K optimal control points that best align the
template mesh to the target shapes via deformation remains compu-
tationally infeasible when an exhaustive search of

(N
K
)

computations

Algorithm 1: Pseudocode of OPTCTRLPOINTS.

/* Input: The ordered list of initial vertex
indices, the ordered list of sets of the
partitioned vertex indices, and the set of
target shapes. */

/* Output: The ordered list of control point
vertex indices. */

Inputs: (s(0)k )N
k=1, (Vk)

N
k=1, {Xi}M

i=1.

Outputs: (sk)
N
k=1

Function FittingDist((sk)
N
k=1):

S← S((sk)
N
k=1); // Update the binary matrix.

d← ∑i d(Xi,W(S;A)C(S;Xi)); // Eq. 3
return d;

Function FindRegion((sk)
N
k=1,k,dmin):

lmin← k;
for l = 1, . . . ,K do

/* Resample s′ if it is already selected.

*/
do

s′ ∼U(Vl); // Draw a sample vertex.
while s′ ∈ {sk}N

k=1;
sk← s′;
d′← FittingDist ((sk)

N
k=1));

if d′ < dmin then
dmin← d′;
lmin← l;

return lmin,dmin;

Function FindVertex((sk)
N
k=1,k,dmin,V):

s′min← sk;
for s′ ∈ V do

sk← s′;
d′← FittingDist ((sk)

N
k=1));

if d′ < dmin then
dmin← d′;
s′min← s′;

return s′min,dmin;
dmin← inf
for k = 1, . . . ,K do

sk← s(0)k ; // Initialize with geodesic FPS.

for k = 1, . . . ,K do
l,dmin← FindRegion ((sk)

N
k=1,k,dmin));

s′,dmin← FindVertex ((sk)
N
k=1,k,dmin,Vl ));

sk← s′; // Update the k-th control point.

is used. To address this issue, we propose an effective search al-
gorithm that reduces the time complexity to asymptotically linear
order of the number of vertices Θ(N +K2) in average. Despite this
reduction in complexity, our algorithm still manages to discover
nearly optimal solutions in practice.

In our search algorithm, our objective is to iteratively refine a set
of control points starting from an initial configuration. We utilize
geodesic Farthest Point Sampling (FPS) over surface of the mesh to
establish the initial set. Our algorithm incorporates two key ideas:

• Drawing inspiration from the coordinate descent approach in
continuous optimization, we propose to determine the optimal
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location for each control point individually, while keeping all
other current control points fixed.

• We propose a level-of-detail approach where at each iteration of
updating a single control point, we select one of the partitioned
volumes of the template mesh first and then traverse each vertex
in the selected partition.

Specifically, let (sk)
N
k=1 denote the ordered list of template vertex

indices for the control points, where sk ∈ [1,N] for all k, and sk ̸= sl
for all distinct k and l. Let S((sk)

N
k=1) then represent the K ×N

binary matrix, with elements equal to one for the selected points
and zero otherwise. The indices of the control points are initialized
with the FPS point indices (s(0)k )N

k=1. We construct the partition of
the vertex indices {Vk}N

k=1 based on their proximity to the initial

set of control points (s(0)k )N
k=1, as shown inside the black boxes of

Fig. 2. Since our algorithm allows the selection of internal vertices
as control points, we employ the distance over the volume mesh
graph as a measure of proximity. We update each control point sk
sequentially using the following two steps for each point. (See Alg. 1
for the details.)

In the first step, we determine the partition to which the k-th
control point sk will move. We randomly sample a vertex from
each partitioned volume Vl . Then, we select the one of the sam-
pled vertices that provides the minimum sum of distances between
the template mesh and all the target shapes after deformation (as
shown in Eq. 3) when substituting sk. By finding the vertex with the
minimum sum of fitting distances, we identify the corresponding
partitioned region V for further exploration. (See FindRegion
function in Alg. 1.) This approach allows each control point to ex-
plore different regions across the entire shape, mitigating the risk of
falling into a local minimum through local search.

In the second step, within the selected region V , we find the
best vertex, excluding those already chosen as control points, as a
replacement for the k-th control point sk using the same distance
measurement in Eq. 3. The vertex selected during this step becomes
the new k-th control point for the subsequent iteration. (See the
FindVertex function in Alg. 1.)

Assuming an even partitioning of the template mesh with an equal
number of vertices in each region, the average time complexity to
update the entire set of control points once is asymptotically O(K2)
for the first step and Θ(N) for the second step. Therefore, the total
complexity is Θ(N +K2). This complexity is linear with respect to
the number of vertices, and since K ≪ N, it significantly reduces
the computation time compared to the exhaustive search complexity
of O(NK).

5. Experiments

In this section, we present the results of our experiments, where
we compare the performance of our proposed method, OPTCTRL-
POINTS, with baseline search methods and a neural-network-based
keypoint prediction method. We evaluate the performance based
on the fitting error to the target shapes after deformation and the
computation time.

5.1. Datasets

We evaluate our method on three different datasets of human
(SMPL [LMR∗15]) and animal (SMAL [ZKJB17] and Deform-
ingThings4D [LTT∗21]) models. For each class of shapes, we take
one template mesh and multiple target shapes covering a wide range
of non-rigid deformations.

5.1.1. SMPL [LMR∗15] and SMAL [ZKJB17]

For human models, we use synthetic shapes generated from
SMPL [LMR∗15]. We use the samples generated by Groueix
et al. [GFK∗18], which contains a large variety of body poses and
shapes. For animal models, we use four classes of shapes includ-
ing fox, hippo, horse, and tiger generated from SMAL [ZKJB17].
We follow Groueix et al. [GFK∗18] to randomly draw the shape
samples. We run our searching algorithm on each animal category
separately. For both SMPL and SMAL, we use the rest pose as the
template shape and take M = 1000 random shapes for each template
as targets {Xi}M

i=1.

5.1.2. DeformingThings4D [LTT∗21]

DeformingThings4D [LTT∗21] contains characters from Adobe
Mixamo and also multiple animated motions for each character. We
evaluate our approach both with all motions for each character and
also with each motion to demonstrate the effectiveness of our data-
driven method of locating the ideal set of control points best fitting
the given set of targets. We use seven characters in our experiments,
namely bear, deer, doggie, dragon, moose, procy and raccoon. For
each character, we randomly sample M = 1000 different targets
from all motions for the per-category experiments, while we use all
the frames of the motion as targets for the per-motion experiments.
We use the first frame of specific animation sequence as the template
shape. Refer to the appendix for more details about the data used in
our experiments.

5.2. Experiment Setup

5.2.1. Data Preprocessing and Implementation Details

For all template meshes, we first convert each mesh into a watertight
manifold using the method of Huang et al. [HSG18] and then into a
tetrahedral mesh using TetWild [HZG∗18]. We simplify and regular-
ize each tetrahedral mesh to have 5000 vertices and also normalize it
to fit in a unit sphere. We then precompute the Bilaplacian matrix A
for each template mesh using the libigl [JP∗18] and and its inverse
with the regularization described in Sec. 4.2.1 for efficient searching.

To compute C(S;Xi) = S f (Xi) (Sec. 4.1), we leverage vertex-
wise correspondence of the meshes provided from SMPL [LMR∗15],
SMAL [ZKJB17], and DeformingThings4D [LTT∗21], while the
correspondence can also be found using the off-the-shelf shape cor-
respondence methods (refer to a survey [Sah20] for the recent litera-
ture). Given the vertex-wise correspondence, we use the average of
per-vertex L2 distance as our shape-to-shape distance function d(·, ·)
(Sec. 4.1). We executed Alg. 1 only once in all the experiments, but
we also demonstrate in Sec. 5.6 that iterating the algorithm further
improves the selection of control points.
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Template Target FPS Random KPD Ours FPS Random KPD Ours

0.010 0.005

Figure 4: Qualitative Results on the SMPL [LMR∗15] and SMAL [ZKJB17] datasets. We show qualitative comparisons of our approach compared to FPS,
random search and KPD, respectively. For each example: (Left) We show each method’s output control points, the corresponding deformed template (white)
overlayed over the desired target (yellow) to illustrate the alignment of the deformed source to the target shapes using the output control points. Notice that our
approach finds better control points near joints as shown in the shoulder of the human, legs of the fox, horse, hippo and tiger. (Right) We also show the raw
output deformed source shape colored with vertex-to-vertex alignment to target error map for visualization. We see that apart from achieving better fitting error,
our approach achieves less distortions especially on the limbs. In all examples, the bottom row is a zoomed in version of the top row. Best viewed in zoom and
color. Refer to the appendix for additional results.
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0.010 0.005

Template Target FPS Ours
Per-category

Ours
Per-motion

FPS Ours
Per-category

Ours
Per-motion

Figure 5: Qualitative Results on Deform4DThings [LTT∗21]. We show qualitative comparisons of our approach in both per-category and per-motion settings
compared to FPS. (Left) We show the output control points together with the corresponding deformed source shape (white) overlayed with the desired target
(yellow). We see that our approach leads to better fitting compared to the FPS baseline. Moreover, our per-motion setting outputs more specialized control points
that leads to better fitting to the specific motion, as shown by the legs of the bear (first row), head of the deer and raccoon (second and last row), tail of the
doggie (third row), back and head of the horse (fourth row). (Right) We similarly also show a colored visualization of target shape that corresponds to the
vertex-to-vertex error map. We see significantly less distortions of our output shapes compared to the baseline. Best viewed in zoom and color. Refer to the
appendix for additional results.
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Average Fitting Distance (×10−4)

Methods K
SMPL

[LMR∗15]
SMAL [ZKJB17]

fox hippo horse tiger

KPD
[JTM∗20]

16 17.09 23.12 23.41 34.82 21.53
24 17.16 25.63 23.65 28.42 22.92
32 14.49 25.70 20.75 32.47 20.15

FPS
16 11.28 10.16 12.57 10.37 8.47
24 5.70 4.41 8.32 3.92 3.76
32 3.60 2.97 5.38 2.52 2.60

Random
Search

16 8.38 8.18 9.20 7.88 6.78
24 3.91 4.78 5.38 4.52 3.80
32 2.51 3.40 3.63 2.97 2.59

Ours
16 5.16 5.07 5.49 4.45 4.15
24 2.25 2.61 3.06 2.13 2.21
32 1.36 1.89 1.83 1.57 1.42

Table 1: Average fitting distance between corresponding vertices of target
shape and deformed template shape multiplied by 104.

5.2.2. Baselines

We compare our method, OPTCTRLPOINTS, with three different
baselines:

1. Farthest Point Sampling (FPS): This is the case of directly
using the geodesic Farthest Point Sampling vertices, our initial
set of control points (s(0)k )N

k=1, as the final set without searching.
We demonstrate in our experiments that our efficient searching
method discovers a much better set of control points, which
greatly reduces the fitting error.

2. Random Search: Instead of the computationally infeasible ex-
haustive search that tests all possible

(N
K
)

cases, we compare our
method with a random search approach. In random search, we
randomly select K control points from the N vertices multiple
times and choose the set with the lowest fitting distance. We
iterate the random set sampling process N ×K times, which is
significantly larger than the number of cases in our method.

3. KeypointDeformer (KPD) [JTM∗20]: We additionally compare
our method with KPD, which leverages a neural-network-based
approach to predict keypoints on shapes and align the template
to the target through cage-based deformation (not biharmonic).
We trained KPD for each template shape and its corresponding
set of M targets using the released codebase. The cage created
by warping a sphere mesh often fails to disentangle the defor-
mations of different parts, especially in shapes with articulating
parts (such as limbs of a human body) or complex topological
structures. In our experiments, we demonstrate that our method,
employing biharmonic deformation, achieves a better fit of the
template shape to the targets with the ideal set of control points.

5.3. Fitting Error Comparisons with SMPL [LMR∗15] and
SMAL [ZKJB17]

We evaluate our OPTCTRLPOINTS and other baselines by assessing
how well the template mesh aligns with the target shapes using the
output deformation handles. We conducted experiments with all the

Methods
Time (mins)

K = 16 K = 24 K = 32

Random Search 48.8 70.4 97.0

Ours 2.8 2.9 3.0

Table 2: Execution time profiling of our OPTCTRLPOINTS compared to
random search. We show that our method demonstrates significantly faster
performance compared to random search as our time complexity is reduced
to Θ(N + K2), whereas the time requirement increase linearly with the
number of control points for random search.

methods while varying the number of keypoints K to be 16, 24, and
32.

First, we compare our method to FPS and random search, where
control points are used as handles for biharmonic deformation. Tab. 1
presents a comparison of the average fitting distances between the
template and target shapes. Compared to FPS, where our initial
set of control points is used directly, our method demonstrates a
significant improvement, reducing the fitting distance by more than
half in most cases. Additionally, when compared to random search,
which explores a much larger number of control point sets, our
efficient search yields substantially lower fitting errors.

Qualitative results in Fig. 4 also show that our method achieves
more meaningful fine-grained deformations than FPS and random
search, thanks to the optimal placement of control points in regions
with greater variations or articulations. The first column shows the
templates, the second column displays the targets, the next four
columns demonstrate the alignment results through deformation,
and the last four columns exhibit the fitting error maps over the
deformed template shapes. Notably, failure cases of FPS and random
search are observed, resulting in distortion in the deformation, such
as in the second row where the legs of the fox are distorted, and in
the last row where the legs and body of the tiger deviates from the
target shapes. In contrast, our method’s control points produce much
better deformation results.

Furthermore, compared to KPD [JTM∗20], which employs cage-
based deformation instead of biharmonic deformation, our method
excels in fitting the template to the targets through deformation.
Tab. 1 clearly illustrates a substantial gap between the average fitting
errors of KPD and our method. Moreover, Fig. 4 vividly showcases
the qualitative difference, especially in the arms and legs of the
human (first row) and the hind legs of the fox and the horse (second
and fourth rows).

Figures are best viewed with zoom and in color. Additional
qualitative results can be found in the supplementary material.

5.4. Computation Time Analysis

Our proposed reformulation for the biharmonic weights matrix com-
putation (Sec. 4.2) and the efficient search algorithm (Sec. 4.3)
enable us to determine the optimal control point locations in a mat-
ter of minutes, even when dealing with 1000 target shapes. Without
both of these advancements, achieving this task computationally
would be challenging.
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Average Fitting Distance (×10−4)

Methods K
Bear (3EP) Deer (OMG) Doggie (MN5) Dragon (OF2) Moose (1DOG) Procy (STEM) Raccoon (VGG)

Cat. Mot. Cat. Mot. Cat. Mot. Cat. Mot. Cat. Mot. Cat. Mot. Cat. Mot.

FPS
16 18.79 16.06 15.89 17.40 20.13 16.97 45.33 44.35 14.72 14.99 26.24 24.57 30.83 27.88
24 8.78 7.72 5.33 5.59 7.48 6.24 26.35 26.31 6.66 6.57 15.24 14.40 15.68 15.65
32 6.82 6.05 3.10 3.14 6.32 5.31 16.85 17.06 4.94 4.86 9.89 9.70 10.87 11.35

Random
Search

16 16.17 12.59 8.35 7.14 14.76 11.27 21.57 19.91 14.04 12.25 20.16 17.86 27.75 24.99
24 9.83 7.77 3.74 3.32 8.63 6.65 16.04 15.41 6.77 6.37 12.19 10.36 16.54 15.12
32 5.95 5.05 2.54 2.31 5.86 4.56 14.02 13.50 4.52 4.17 7.82 6.92 11.96 11.23

Ours
16 9.67 7.65 5.23 4.19 8.72 6.67 17.80 16.76 6.62 6.37 13.14 11.10 16.13 14.56
24 5.16 4.06 1.72 1.56 4.57 3.54 10.68 10.31 3.78 3.51 6.46 5.50 9.10 8.42
32 3.47 2.73 1.28 1.15 2.95 2.31 9.29 8.95 2.74 2.44 4.35 3.73 5.80 5.37

Table 3: Target-driven shape deformation results for DeformingThings4D [LTT∗21] dataset. The control points identified by our OPTCTRLPOINTS method
achieve better alignment of the template to the targets compared to FPS and random search. Moreover, when specific motion targets (per-motion, denoted as
Mot.) are provided instead of general targets across all motions (per-category, denoted as Cat.), the control points are further tailored, resulting in even lower
fitting distances. The L2-loss across corresponding vertices is multiplied by 104.

Iteration
SMPL [LMR∗15]

K = 16 K = 24 K = 32

1 5.14 2.31 1.34

2 4.77 1.95 1.17

3 4.74 1.80 1.15

Table 4: Results from iterating Alg. 1. Fitting distance is improved through
iterative execution of Alg. 1 on the SMPL dataset across different numbers
of control points. The L2-loss across corresponding vertices is multiplied by
104.

We first present profiling results comparing the computation time
of the fitting loss (Eq. 3) using the original biharmonic weight for-
mation (Eq. 2) and our reformulation (Eq. 12). When computing the
fitting loss with 16 control points, utilizing a single NVIDIA RTX
3090 and parallelization, our PyTorch implementation takes 1.188
seconds for the original formulation, while our reformulation with
precomputation completes the calculation in only 0.024 seconds,
which is 49 times faster than the original formulation.

We also demonstrate the efficiency of our method compared to
the naive random search approach for finding a better solution. We
conducted profiling to compare the overall execution time of our
OPTCTRLPOINTS and random search. Tab. 2 presents the average
runtime of OPTCTRLPOINTS compared to random search. In ran-
dom search, we sample subsets of vertices N ×K times, whereas
our method has a linear order complexity with respect to the number
of vertices. Consequently, we achieve approximately K times more
speedup, as shown in Tab. 2, resulting in a significant reduction in
computation time from about an hour to approximately 3 minutes,
while also obtaining a better set of control points (as demonstrated
in the quantitative results in Tab. 1).

These findings emphasize the crucial role played by both the new
biharmonic weight formation and the efficient search algorithm,
as without them, it would take days to find a satisfactory set of
control points. For instance, when the number of control points K is
16, 48.8mins×49 = 2391.2mins = 1.66days.

5.5. Results with DeformingThings4D [LTT∗21]

In the experiment with the DeformThings4D dataset, we highlight
the effectiveness of our OPTCTRLPOINTS in discovering the optimal
set of control points for a given set of targets in a data-driven manner.
We present two distinct experimental setups: per-category and per-
motion.

Quantitative results are presented in Table 3, where our approach
outperforms both FPS and random search in both the per-category
and per-motion setups. Notably, our OPTCTRLPOINTS consistently
achieves a lower fitting error in the per-motion setup compared
to the per-category setup. This outcome is attributed to our data-
driven approach, which enables us to discover control points that
are tailored to the given set of targets.

Fig. 5 presents qualitative results. In the third row, FPS fails to
preserve the geometry of the dog’s legs and tail, while our approach
successfully retains the leg geometry during the howl motion by
identifying control points on the joints. Moreover, our per-motion
approach significantly outperforms the FPS baseline in scenarios
involving larger motions and wider variations in the targets. For
example, in the second row, our method achieves much better results
in recovering the geometry of the deer’s face and legs, whereas FPS
falls short in this regard. Also, in the fifth row, our approach excels
at capturing head deformations by identifying additional control
points on the raccoon’s head and neck.

Figures are best viewed with zoom and in color. Additional
qualitative results can be found in the supplementary material.

5.6. Refinement through Iteration of Algorithm 1

We show that while executing Algorithm 1 only once can achieve
desirable results, iterating through the algorithm can yield improved
outcomes, as shown in Tab. 4. We see that through iterative execution
of the Alg. 1, the average fitting distance is further reduced, leading
to better results on the SMPL dataset across different numbers of
control points.
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6. Conclusion

We introduced OPTCTRLPOINTS, a data-driven method for deter-
mining the optimal set of control points to replicate target shapes
as biharmonic deformations of the template mesh. To address the
computational challenges associated with finding the best k-subset
out of N vertices while solving a large-scale linear system at each
trial, we proposed a reformulation of the biharmonic weights that
significantly speeds up the computation. Additionally, we developed
an efficient search algorithm that significantly outperforms random
search in terms of both quality and time efficiency. In future work,
we plan to extend our method to identify region handles of 3D
shapes. This extension will allow us to handle more localized and
specific deformations in a controlled and data-driven manner.
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A. Appendix

We include more dataset details in this section. Please refer addi-
tional qualitative results in the supplementary material.

A.1. DeformingThings4D [LTT∗21] Data Used in Our
Experiments

We select seven characters in our experiments namely bear, deer,
doggie, dragon moose, procy and raccoon, which have more than
1,000 target shapes. For the per-motion experiments, we use all
motions that have more than 100 target shapes for each character,
which are namely:

• bear3EP: Agression, Drink, Eat1, Eat2, Hide, Idle1, Idle2, Idle3,
Lie, Sleep

• deerOMG: drink, eat1, hide, Idle1, Idle2, Idle3, lie, sleep
• doggieMN5: drink, eat1, eat2, Howl, idle1, idle2, idle3, Lie

• dragonOF2: act3, act30, act31, act38, act46, act49, act57
• moose1DOG: drink, eat1, Idle1, Idle2, Idle3, lie, Liesleep
• procySTEM: Actions2, Idle1, Idle8, Idle9, Idle11, SleepLieSeat0,

SleepLieSeat2
• raccoonVGG: Actions1, Climb15, Idle0, Idle2, Idle6,

SleepLieSeat1

The template shape of each category is set to the first frame (bold)
of the first animation in the above list.
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