
Score-Based Point Cloud Denoising
Development Track

Kunho Kim
KAIST

kaist984@kaist.ac.kr

Gyeongwon Jeong
KAIST

jgyw0910@kaist.ac.kr

Abstract

This paper reproduce Score-Based Point Cloud Denois-
ing [1]. Denoising the noisy point cloud is crucial to many
3D vision application including autonomous driving and
robotics. The original paper [1] introduced the concept
of a score of the distribution model of noisy point clouds,
and proposed the score-based denoising algorithm using
gradient ascent. The biggest challenge experienced dur-
ing implementation was the difficulty of debugging accord-
ing to the long training time. Finally, we achieved almost
similar but slightly inferior results compared to the au-
thors’ model, and especially our unsupervised model shows
a slightly better result than authors’. Code is available
at: https://github.com/Soulmates2/Score-
Based-Point-Cloud-Denoising

1. Introduction

Point clouds are 3D sampled points on continuous sur-
faces, captured by scanning sensors. It is widely used in
the 3D research field. However, due to limitations of scan-
ning sensors, point clouds tend to be noisy. Noise in point
clouds adversely affects several downstream tasks such as
rendering and reconstruction, thus point cloud denoising is
essentially needed in the real world.

The purpose of point cloud denoising is to create a
noise-free point cloud from a noisy point cloud. While
classical point cloud denoising methods have been mostly
optimization-based that reiled on geometric priors [6], re-
cent studies have emerged to denoise point clouds using
deep learning. The most representative deep-learning-based
denoising method is to predict the displacement between
each point in the noisy point cloud and each point in the
clean point cloud using a neural network [7]. However,
displacement-based methods have a problem of causing
shrinkage and outliers due to inaccurate predictions of noise
displacement. To address this problem, authors of Score-
Based Point Cloud Denoising [1] introduced the concept of

Figure 1. An illustration of score-based point cloud denoising.
Performing gradient ascent with estimated score denoises the point
cloud.

a score of the distribution model of noisy point clouds. They
construct the model that predicts the score of the distribu-
tion, and perform gradient ascent using the predicted score
to denoise the point cloud; a detailed description will be
given in the next section.

This report reproduce Score-Based Point Cloud Denois-
ing. We implemented the whole pipeline of denoising
network with libraries ”pytorch”, ”pytorch3d”, ”pytorch-
cluster” and ”point cloud utils”. We borrowed datasets,
hyper-parameter setting and basic skeleton code of denois-
ing model from authors.

We have four key challenges in reproducing the original
work: (1) Traning time of the model is too long (almost 40
hours), so it is difficult to debug our code within a dead-
line. (2) The detailed architecture of the model is not ex-
plained in the paper, and it can be known only by looking
at the authors’ code. (3) Some datasets (PC-Net) required
for testing and visualization codes are not provided. (4) For
PC-Net dataset, authors’ code even not reproduce the point-
to-mesh distance results in their paper. For (2), we re-drawn
the entire pipeline of the model ourselves by referring to the
author’s code, and implemented our model based on it.

We use the same experimental setup as the original pa-
per. We use PU-Net [2] dataset for training and testing our
model, and PC-Net [3] dataset for testing only. We evaluate
our model using two metrics: Chamfer distance (CD) [4]
and point-to-mesh distance (P2M) [5]. Our model shows
results that are almost similar to the author’s model, but

1

https://github.com/Soulmates2/Score-Based-Point-Cloud-Denoising
https://github.com/Soulmates2/Score-Based-Point-Cloud-Denoising

slightly inferior. Especially for unsupervised learning, our
model shows a slightly better result than the authors’ model.

In summary, our achievements are:

• Implemented the whole code for original paper with a
very basic skeleton code,

• Achieved almost similar but slightly inferior perfor-
mance compared to the authors’ model.

2. Method Summary
We have a noisy point cloud X = {xi}Ni=1 and its un-

derlying noise-free point cloud Y = {yi}Ni=1. Our model
is trained to predict a noise-free point cloud Y from a noisy
point cloud X .

2.1. Overview

A noise-free point cloud can be represented as a set of
samples from some 3D distribution function p : R3 → R.
Also, the distribution of the noisy point cloud can be seen
as the convolution of the noise-free distribution p and some
noise model n : R3 → R, expressed as follows:

(p ∗ n)(x) =
∫
s∈R3

p(s)n(x− s)ds. (1)

We assume that the noise model n(x) is continuous and has
a unique maximum value at x = 0. Under this assumption,
the noise-free surface is the mode of the noisy distribution
p ∗ n. Hence we can get the noise-free point cloud by mov-
ing noisy points toward the mode of p ∗ n, and this can be
done by performing gradient ascent on log[(p ∗ n)(x)], the
log probability function of p ∗ n.

However, the biggest problem here is that p ∗ n is un-
known at test time. One important observation to tackle this
problem is that in order to perform gradient ascent, it is not
necessary to know p∗n, but only the gradient of its log prob-
ability function ∇x log[(p ∗ n)(x)]. We call this gradient a
score. We build a neural network that estimates the score,
and use it to denoise the noisy point cloud by performing
gradient ascent.

Section 2.2 describes the structure of a score estimation
network, and section 2.3 explains the objective function for
training the score estimation network. Section 2.4 describes
the gradient ascent algorithm for denoising a noise point
cloud using the estimated score.

2.2. The Score Estimation Network

The score estimation network estimates the score
Si(x) := ∇x log[(p∗n)(x)] for any 3D coordinate x ∈ R3

near the noisy point cloud X = {xi}Ni=1. It consists of two
units: a feature extraction unit and a score estimation unit.

The feature extraction unit is a neural network that learns
pointwise features from the input noisy point cloud X . We

adopt the structure of feature extraction networks of other
denoising models [8], which consists of a stack of densely
connected dynamic graph convolutional layers [9]. Let hi

denote the learned feature for point xi.
The score estimation unit takes some 3D coordinate x ∈

R3 near xi ∈ X and the point x1’s feature hi. The score
of the point x is estimated as follows:

Si(x) = Score(x− xi,hi), (2)

where Score(·) is a multi-layer perceptron (MLP).

2.3. The Training Objective Function

In this section, we describe the objective function for
training the score estimation network. The ground truth
score s(x) for some point x ∈ R3 is defined as follows:

s(x) =
1

k

∑
yi∈kNN(x,Y)

(yi − x), (3)

where Y = {yi}Ni=1 is the ground truth noise-free point
cloud and kNN(x,Y) is x’s k-nearest neighborhood in Y .
Intuitively, s(x) is a vector from x to the surface of the
noise-free point cloud Y .

We define the training objective function L(i) for each
point xi ∈ X as follows:

L(i) = Ex∈N (xi)

[
∥s(x)− Si((x))∥22

]
, (4)

where N (xi) is a distribution in R3 which concentrated in
the neighborhood of xi. The final objective function L is
just an average of each point’s objective function:

L =
1

N

N∑
i=1

L(i). (5)

2.4. The Score-Based Denoising Algorithm

Since Si(x) is trained to estimate the vector from x to
the surface of ground truth point cloud Y , we can solely
use Si to denoise xi. However, to improve robustness and
reduce the bias, we use the ensemble score function:

Ei(x) =
1

k

∑
xj∈kNN(xi)

Sj(x), (6)

where kNN(xi) is xi’s k-nearest neighborhood in X . Note
that this k may be different from the k of equation (3).

Using the ensemble score function, denoise the point
cloud X using the following gradient ascent rule:

x
(t)
i = x

(t−1)
i + αtEi(x(t−1)

i), t = 1, 2, . . . , T,

x
(0)
i = xi, xi ∈ X,

(7)

2

Points 10K (Sparse) 50K (Dense)
Noise 1% 2% 3% 1% 2% 3%

Dataset Model CD P2M CD P2M CD P2M CD P2M CD P2M CD P2M

PU

Authors (1) 2.521 0.463 3.686 1.074 4.708 1.942 0.716 0.150 1.288 0.566 1.928 1.041
Authors (Unsup.) 3.107 0.888 4.675 1.829 7.225 3.762 0.918 0.265 2.439 1.411 5.303 3.841

Authors (2) 2.549 0.486 3.656 1.090 4.837 2.123 0.714 0.152 1.251 0.543 1.918 1.037
Ours 2.578 0.528 3.829 1.194 5.053 2.242 0.751 0.176 1.556 0.775 2.321 1.398

Ours(Unsup.) 3.000 0.779 4.582 1.688 7.574 4.042 0.928 0.260 2.304 1.290 3.489 2.162

PC
Authors (1) 3.369 0.830 5.132 1.195 6.776 1.941 1.066 0.177 1.659 0.354 2.494 0.657
Authors (2) 3.332 1.224 5.113 1.826 6.787 2.958 1.055 0.307 1.641 0.581 2.473 1.102

Ours 3.208 1.198 5.185 1.785 6.960 2.857 1.053 0.279 1.908 0.649 2.829 1.119

Table 1. Comparison among authors and ours. (1) represents the result of paper, and (2) represent the result of CD and P2M is multiplied
by 104

where T is the number of gradient ascent steps, and {αt}Tt=1

is the step size sequence satisfying the following criteria:
{αt} is a decreasing sequence towards 0. This criteria are
necessary to ensure convergence and avoid over-denoising.
Finally, {x(T)

i }Ni=1 is a denoised point cloud.

3. Implementation Details
We have implemented whole score estimation network

(including feature extraction unit and score estimation unit),
loss function, score-based gradient ascent algorithm, and
some other stuff including preprocessing, evaluation code,
and all codes for ablation studies. On the other hand, we
borrowed dataset, hyper-parameter setting and basic skele-
ton code (including class name and parameter name of func-
tions) of denoising model from authors [1]. We also used
some external libraries, which are listed in Acknowledg-
ments section below.

For dataset, first we normalize point clouds into the unit
sphere. Then these point cloud are perturbed by Gaussian
noise with randomly selected standard deviation from 0.5%
to 2%. Data augmentation was applied through random
scale and random rotation.

For the feature extraction unit, 4 densely connected edge
convolution layers are stacked with fully-connected layers
in between.

For the score estimation unit, point coordinate and shape
latent are forwarded into stacked first convolution layer, 4
Resnet convolution block, and last convolution layer.

For the loss function, we just followed the equation in
section 2.3. We use k = 4 for equation (3), and N (xi) in
equation (4) is implemented by finding k-nearest neighbor-
hood of xi in X with k = 32.

For denoising, we first divide the whole point cloud into
1000 patches in order to be good at denoise without being
shape-dependent. Centers of the patches are determined by
the farthest point sampling. Each patch is then fed into the

score estimation network, and we calculate the ensemble
score (equation (6)) for each point with k = 4. We use
T = 30, and αt = 0.2×0.95t for the step size sequence for
gradient ascent.

4. Experimental Results

4.1. Experiment Setup

Datasets For training, we use only PU-Net train dataset
(40 shapes) with resolutions 10K, 30K and 50K. Each point
cloud of dataset is sampled by Poisson disk sampling from
each mesh file. As mentiond in Section 5, we apply trans-
formations to the data.

For evaluation, as in the original paper, we use PU-Net
test dataset (20 shapes) and PC-Net test dataset (10 shapes)
provided by the author. Just like the train dataset, each point
cloud of test dataset is sampled by Poisson disk sampling.

Authors use Paris-rue-Madame dataset for visual evalua-
tion, but we did not use this dataset because of visualization
issue.

Baseline In Table 1, Authors(1) represents the evaluation
results described in the paper. Authors(2) represents the
evaluation results with best checkpoint trained by us with
author’s code. We set Authors(2) as the baseline for a more
accurate comparison since there is difference from paper.

Evaluation Metrics We use Chamfer distance (CD) and
point-to-mesh distance (P2M). Before computing the met-
rics, we normalize the denoised point cloud into the unit
sphere because the size of point clouds varies.

4.2. Quantitative Results

We use PU-Net test dataset (20 shapes) and PC-Net test
dataset (10 shapes) with resolutions 10K and 50K provided
by the author. These dataset are perturbed by isotropic
Gaussian noise with standard deviation from 1% to 3%. As
presented in Table 1, our implementation is slightly inferior

3

Noisy Authors Ours Clean

Kitten

Cow

Chair

Figure 2. Visualization comparison of denoising results under
Gaussian noise. The farther away points are from the surface, the
more yellow.

to the baseline. Since model training takes 40 hours, we
tried to debug each module but this was the best result.

Our model is trained with only Gaussian noise. For test-
ing its generalizability, we wanted to use a different noise
type — simulated LiDAR noise. The authors provided us
these LiDAR dataset but it does not have clean data, only
noisy data. Therefore, we could not evaluate quantitative
evaluation for LiDAR noise.

We also conducted an experiment on unsupervised learn-
ing. Equation (4) was replaced by:

Lunsup =

1

N

N∑
i=1

Exj∈NN(xi)

[
∥Exj∈NN(xi,X)[xj − xi]− Si((xj))∥22

]
.

(8)

4.3. Qualitative Results

We use Mistuba renderer for visualization. The yellow
color indicates the noisy points away from surface and the
blue color indicates the points underlying surface. It also
represents its reconstruction error measured by point-to-
mesh distance introduced in Section 4.1. Our results show
that score-based denoising achieve good performance.

4.4. Ablation Studies

(1) Score-based denoising algorithm We replace the
gradient ascent rule by directly adding without step size αt.
Then, predicted score is added to the input coordinates xi

yi = xi + Ei(xi). (9)

(2) Neighborhood-covering training objective We re-
place the training objective by this:

L(i) = ||s(xi)− Si(xi)||22, (10)

which consider only the position of xi. While the original
training objective considers the neighborhood of xi.

(3) Ensemble score function We replace the ensemble
of 4 score functions with the single score function Si(x).

As shown in Table 2, all the components affect to the
denoising performance. For the first and second parts of the
ablation studies, evaluation result is too high compared to
authors’ result.

Dataset: PU 10K (Sparse)
Noise 1% 2% 3%

Ablation CD P2M CD P2M CD P2M

Authors

(1) 3.237 0.994 5.241 2.258 7.471 4.049
(1)+iter. 3.237* 0.994* 5.241* 2.258* 6.073 2.953

(2) 4.726 2.188 5.740 2.748 5.976 3.036
(3) 2.522 0.471 4.021 1.280 6.872 3.497

Full 2.521 0.463 3.686 1.074 4.708 1.942

Ours

(1) 7.504 4.596 12.45 8.866 10.49 6.978
(1)+iter. 7.504* 4.596* 12.45* 8.866* 10.49* 6.978*

(2) 9.932 6.714 14.24 10.54 26.43 20.94
(3) 2.580 0.530 4.235 1.475 5.396 2.497

Full 2.578 0.528 3.829 1.194 5.053 2.242

Table 2. Ablation studies. (*) represents that achieves the best
performance with only 1 iteration. CD and P2M is multiplied by
104.

4.5. Beyond Denoising: Upsampling via Denoising

We asked about the upsampling setup via email, but the
person who replied to the email was not the author, and
he said he did not know. In addition, we could not obtain
dataset for upsampling, so this experiment is infeasible.

5. Conclusion
We re-implement almost every part of Score-Based Point

Cloud Denoising [1]. Our model showed little low but
similar performance compared to the author’s model, and
showed better performance for unsupervised learning.

Acknowledgments

Kunho Kim implemented the score estimation unit
and training/test pipeline, and Gyeongwon Jeong imple-
mented the feature extraction unit and gradient ascent al-
gorithm. There is no external collaborator. We borrowed
dataset, hyper-parameter setting and rendering code from
author. To evaluate point-to-mesh distance, we use li-
braries ”point cloud utils” and ”pytorch3d”. We use library
”pytorch-cluster” to use farthest point sampling function to
merge denoised patches.

References

[1] Luo Shitong and Hu Wei. Score-Based Point Cloud
Denoising. ICCV 2021.

[2] Yu Lequan, Li Xianzhi, Fu Chi-Wing, Cohen-Or
Daniel, and Heng Pheng-Ann. PU-Net: Point Cloud Up-
sampling Network. CVPR 2018.

4

[3] Rakotosaona Marie-Julie, La Barbera Vittorio, Guer-
rero Paul, Mitra Niloy J and Ovsjanikov Maks. POINT-
CLEANNET: Learning to denoise and remove outliers from
dense point clouds. Computer Graphics Forum, 2020.

[4] Fan Haoqiang, Su Hao and Guibas Leonidas. A Point
Set Generation Network for 3D Object Reconstruction from
a Single Image. https://arxiv.org/abs/1612.0060. 2016.

[5] Ravi Nikhila, Reizenstein Jeremy, Novotny David,
Gordon Taylor, Lo Wan-Yen, Johnson Justin and Gkioxari
Georgia. Accelerating 3D Deep Learning with PyTorch3D.
https://arxiv.org/abs/2007.08501. 2020

[6] Julie Digne and Carlo De Franchis. The bilateral fil-
ter for point clouds. Image Processing On Line, 7:278–287,
2017.

[7] Marie-Julie Rakotosaona, Vittorio La Barbera, Paul
Guerrero, Niloy J Mitra, and Maks Ovsjanikov. Pointclean-
net: Learning to denoise and remove outliers from dense
point clouds. In Computer Graphics Forum, volume 39,
pages 185–203. Wiley Online Library, 2020.

[8] Shitong Luo and Wei Hu. Differentiable manifold
reconstruction for point cloud denoising. In Proceedings
of the 28th ACM International Conference on Multimedia,
pages 1330–1338, 2020.

[9] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. ACM Transactions
on Graphics (TOG), 38(5):1–12, 2019.

5

	. Introduction
	. Method Summary
	. Overview
	. The Score Estimation Network
	. The Training Objective Function
	. The Score-Based Denoising Algorithm

	. Implementation Details
	. Experimental Results
	. Experiment Setup
	. Quantitative Results
	. Qualitative Results
	. Ablation Studies
	. Beyond Denoising: Upsampling via Denoising

	. Conclusion

