
End-to-End learning for Context-Aware Multi-agents Trajectory Prediction

Hoonhee Cho
Department of Robotics Program

gnsgnsgml@kaist.ac.kr

Saeyoon Oh
School of Computing
saeyoon17@kaist.ac.kr

Kunho Kim
Department of Electrical Engineering

kaist984@kaist.ac.kr

Hyojin Sim
School of Computing
gywls655@kaist.ac.kr

You can see the detailed code of our project at our github
repository or https://github.com/Chohoonhee/
CS470-TEAM4-TERM-PROJECT

Abstract

Self-driving cars have received lots of attention for several
years. People nowadays started to actually believe in au-
tonomous driving systems. Yet, we must not forget that there
are still problems. Meanwhile, Trajectory Prediction has
been found to play a crucial role in monitoring self-driving
cars. Although there have been some approaches toward
improving prediction, we believe the performance is yet not
so well as to use in real-time prediction. Therefore through
the research, we tend to build a novel model for ourselves
to tackle this subject.

1. Introduction

As the importance of self-driving cars rises, so as the impor-
tance of tools to monitor the autonomous driving system.
The task of trajectory prediction aims to predict the spa-
tial coordinate of various road-agents such as cars, pedestri-
ans, animals, etc. If the prediction can be done in real-time,
this technique will allow preventing the upcoming accident.
Through the paper, we introduce a novel approach to predict
the best path possible.

2. Related Work

2.1. Multimodal Trajectory Prediction

While a vanilla trajectory prediction aims to predict a path
for an agent, Multimodal Trajectory Prediction model pre-
dicts multiple paths at the same time[1]. This was the paper
that we started with and was one of the baseline for our

Figure 1: Results of Multimodal Trajectory Prediction

study. The model uses CNN with FCN to produce multi-
modal prediction. Yet, there are two big problems of the
model. First is that since the model architecture is too sim-
ple, it does take the context into account. Therefore, it tends
to produce predictions which sometimes are not plausible.
Also the loss function optimizes only the best path among
multiple trajectories which makes other trajectories more
non-plausible. Through our model we tried to overcome
these problems by changing loss function and using more
complex model.

2.2. CoverNet

Figure 2: Architecture of CoverNet

CoverNet is one of the famous trajectories papers published
since MTP using the nuScences dataset[3]. This model
uses the generator to extract various modes, instead of using

1

https://github.com/Chohoonhee/CS470-TEAM4-TERM-PROJECT
https://github.com/Chohoonhee/CS470-TEAM4-TERM-PROJECT
https://github.com/Chohoonhee/CS470-TEAM4-TERM-PROJECT
https://github.com/Chohoonhee/CS470-TEAM4-TERM-PROJECT

MLP to extract probabilities for each mode. The advantage
of using this method is that more modes can be extracted.
However, the problem with this method is that the proper
path does not come out even if the loss is applied to various
modes. Due to the lack of understanding of image context,
the road may be violated or the path may be incorrect.

2.3. R2P2 RNN

Figure 3: Architecture of R2P2 RNN

R2P2 is a paper that used the KITTI dataset to solve the pro-
jectory task, although it did not use the nuScenes dataset[5].
This model uses a past path using Vanilla RNN and has a
property in that it uses sequential data. However, the prob-
lem still exists that the output is not semantic because infor-
mation about roads or lanes is not properly accepted.

3. Proposed Method

In this section, we present our thoughts that we had in mind
while building our architecture. One big problem with the
previous model was that it seemed to not capture the con-
texts. Therefore, one of the most important parts of our
model was to carefully model our architecture to actually
look at the context. There have been two approaches to han-
dle this issue.

3.1. Using multiple agents

Previous model takes only one agent into account for the
prediction. We believe the rationale behind this is that pre-
vious authors believed the interaction between agents can be
done only with the image which turned out to be not true.
Therefore, we now feed the past information about multi-
ple agents directly into the model. This information is fed
to the LSTM Encoder in which will be described in more
detail in the next part. Through directly handing over this
information and with LSTM and Attention between agents,
we thought we would be able to capture the interaction be-
tween agents.

3.2. Separating the input images

The previous model inputs the whole Bird-Eye-View image
as one raster image. Yet it is pretty intuitive that this kind
of formation would not be good for the model since it then
has to learn to also discretize the information (Agent, Path,
Road information). Therefore we now divide one raster im-
age into three different images. We then concatenate the
vectors and feed them to the pre-trained CNN network.

3.3. Optimizing best path using modified loss

Another problem of the previous one dealt with in section
2.1 is that it optimizes just the single best-predicted path.
The given loss function is as follows.

LTMP
ij = Lclassij + α

M∑
m=1

Im=m∗L(τij , τ̂imj) (1)

Lclassij = −
M∑
m=1

Im=m∗ log pim (2)

We have confirmed through many examples that this ap-
proach generates only one persuasive path. Such that (m =
m∗) Since the rationale of multiple trajectory prediction is
to predict multiple feasible paths, this is not what we want
for path prediction. Also since all other paths are bad, there
is the possibility that with a small chance this could actually
be an obstacle of prediction. Therefore we decided to work
on a single best path. The modified loss function that we
use is as follows.

L =

|K|∑
n=1

[L(sin,t, ŝ
i
n,t) + αL(ṡin,t,

˙̂sin,t)] (3)

Where K is the set of trajectory, sit the coordinate of ith
agent at the time-step t, ṡit the difference between sit and
sit+1 divided by the time-step. (α is hyperparameter weight
in which we choose.) First thing to note is that now we are
optimizing for a single path. Also through weighted sum
of the second term, we also made our model to also predict
the velocity. (Note that the difference divided by time-step
refers to velocity of an agent.)

4. Model Architecture
The backbone of our model CMTP is an LSTM model with
attention. Figure 5 depicts the model, which includes an
encoder, an attention-based decoder, and a CNN network.
At a high-level, our model takes pre-processed segment im-
ages, past trajectory vector, and agent velocity as input and
produces a prediction path of the agent, which are then con-
verted to images. We describe these components below.

2

Figure 4: The Context-Aware Multi-agents Trajectory Prediction model structure

4.1. CNN MODEL

We used ResNet50 for CNN backbone. We did not use the
image as a simple 3 channel so that the model could bet-
ter understand the context of the image. Pre-trained CNN
takes pre-processed segment images which are divided one
raster image into three different images. Each image is
an extract of the only agent, path, and the road from a
base raster image. When experimenting with MobileNet,
ResNet34, ResNet50, and ResNet150 did not differ much,
but ResNet50 did the best.

4.2. LSTM ENCODER

The encoder takes the past trajectory vector T as input. We
first initialize hidden state values to zero with (number of
layers, number of total past trajectory vectors, hidden size =
32). We also create relative current predict sequence, which
is zero values of same size with past trajectory vectors. It
has only first sequence before embedding. After linear em-
bedding that vectors, we resize it again and put padding in.
After that using LSTM for predict objects trajectory [4].

Output, (ht, ct)

= LSTM(Embedded Object Trajectory, ht − 1)

= Encoder(T) (4)

4.3. VISUAL ATTENTION

Visual attention is based on the fact that when a person
looks at a picture, he or she does not look at all the parts
of the picture, but only looks at interesting parts. Visual at-
tention was used to efficiently learn what should be noted
in each image. Visual attention takes the first extracted the
segment image feature Γ through convolutional neural net-
work and the final encoding data as input. After operating of
visual attention, we can get pixel-wise attention γt at each
encoding step.

γt = Γ� V isual Attention(ht,Γ, ht) (5)

Figure 5: Visual attention

4.4. SELF ATTENTION

Self-attention is a method of calculating how many vec-
tors are related to each other in image vectors and reflecting
them in the model. In other words, self-attention can iden-
tify relationships between image vectors. We used Scaled
Dot Product Attention for self-attention. The collection of
the final encoding data is passed to the self attention mod-
ule. After operating of self attention, we can get cross-agent
representation h̃t.

h̃t = h0 + Self Attention(ht) (6)

3

Figure 6: Self attention

4.5. LSTM DECODER

LSTM Decoder receives the results of the preceding encod-
ing data, the start velocity of the agent. We first initialize
hidden state ct values to zero with (number of layers, batch
size, hidden size = 32). Hidden state ht has the start velocity
of agent. We also create state tuple which has two hidden
states. Circulating by the length of the sequence, the state
tuple and the preceding encoded data are inserted into the
decoder. After linear embedding that output, we stack up
that results into predict list. Finally, we can get predict path
of agent after permutation and cumulative sum of predict
list [4].

Predict Path, (ht, ct)

= LSTM(Encoder(T) Output, (ht − 1, ct − 1))

= Decoder(Encoding Data, Start V elocity) (7)

5. Experimental Description

We implemented our models using pre-trained ResNet-50
as our backbone CNN. We read the ResNet Conv5 feature
map and apply a global pooling layer. We just use the veloc-
ity stated vector as LSTM decoder inputs. And the learning
rate was periodically reduced to one-tenth when the loss did
not decrease compared to the validation loss continuously.

5.1. Dataset

We used nuScenes datasets that contain 850 different real-
world driving scenarios, where each spanning 20 seconds
of frames[1]. It also provides drivable-area maps and agent
states. the number of datasets is limited to around 25K.
So, we used the cropped images for each sequence to be
5 seconds. And using a sampling rate of 2 Hz that is a
commonly used value in the trajectory dataset. We also em-
ploy Kalman smoothing to reduce noise and impute missing
points in trajectories. We separate the dataset with 32,186
observations in the train set, 8,560 observations in the train-
val set, and 9,041 observations in the validation set. This
split publicly available in the nuScenes software develop-
ment kit.

5.2. Metrics

There are two metrics in which we evaluate our model.
These methods are taken from the methods used in the other
papers and are one of the indicators for evaluating the per-
formance of trajectories.

Figure 7: minADE Figure 8: FDE

First one is minADE (Minimum Average Displacement
Error)

minADEk = minŝ∈P
1

N

t+N∑
τ=t

‖sτ − ŝτ‖ (8)

The metric calculates the average displacement between the
ground truth trajectory and the predicted trajectory, where
sτ is the location of an agent at predicted time-step τ and
ŝτ is at ground truth time-stemp τ . Used as an indicator to
evaluate the overall path, such as direction, was well gener-
ated.
Another metric is FDE (Final displacement Error) which
analyzes the final displacement error.

FDE =
∥∥st+N − ŝ∗t+N∥∥ (9)

4

This value shows how well the endpoint of the path of the
targeted agents was predicted. This value shows how well
the endpoint of the path of the targeted agents was pre-
dicted.[3]

6. Results

6.1. Evaluation through the visualization

Our model can make predictions for different agents at the
same time as below. We showed the result image for the
three representative scenes that are rotation, intersection,
and straight road. When compared to the past, the context
of the image can be read well to show that it does not devi-
ate from the road. Also, the length of the predicted path is
accurate using sequence information.

Figure 9: Our model prediction results

The causes of these results are thought to be the effects of
the following four techniques.
Effectiveness of cross-agent interaction module: Path
can be generated by considering the interaction of each
other when generating path of the agent. Therefore, it is
possible to create the correct path to generate by referring
to other path without creating a conflicting or overlapping
path.
Effectiveness of visual attention module: In order to prop-
erly generate path, image context is required for the im-
age. Visual attention is a way to give the model information
about the image. It actually kept agents from intruding into
the non-drive area.
Effectiveness of LSTM encoder and decoder: LSTM en-
coder used information about past path to extract feature.
[1] MTP did not use this sequence information, so semantic
path could not be obtained. Also, decoder extracted path
sequentially and made it a more suitable model for the path
trajectory.
Effectiveness of adding the difference of loss function:
Trajectory is a task that predicts displacement, but there is
also a velocity information used. Therefore, it is possible
to create a difference value using displacements to obtain
the loss function. This loss also helps to predict a sudden
increase or decrease in displacements.

6.2. Quantitative Evaluation

ADE, FDE metric was used for quantitative evaluation of
the model. For ADE, the min value was used because some
other models produced multiple pathways. In such a model,
the value with the lowest ADE among the multi-mode path-
ways is expressed as minADE. As for our model, we used
multiple paths for agents at a time and averaged out.

Metric minADE ↓ FDE ↓
MTP 1.88 5.22
Covernet 2.77 6.65
R2P2 1.17 2.19
MATF 1.05 2.12
CMTP(OURS) 1.07 2.2

Table 1: Trajectory Model evaluation

We compared our model with various papers since MTP[2].
Compared to the high-performance R2P2[5] and MATF[6],
it can be seen that the performance does not lag behind. This
problem seems to be solved through decoder transforma-
tion. In addition, in the case of ADE, other models obtained
min values among the various paths, but we gave a penalty
to our model and evaluated it in that we generate one path.
We can conclude based on the experimental results that the
visual attention and agent attention we have created help
improve performance in actual path trajectories.

Figure 10: The Weakness of our models

Figure 10 shows that the model is vulnerable to agent ro-
tation. In fact, it is believed that agents went straight by
only reflecting image context, although agents had to turn
around. These problems are found in all models in present
papers. The reason for this is that the nuScenes dataset is
based on actual driving vehicles. Therefore, 95 percents of
the agents in the data only go straight. Such biased data
seem to have produced these results and learning by adding
a variety of data will solve this problem.

7. Contributions
Hoonhee Cho : He created a custom data set using
nuScences-dev-kit and implemented Nuscenes.py code

5

and data loader function. In addition, he implemented a
data augmentation code so that multiple agents can be
used from one image data. Based on the features encoded in
past path, he implemented the agent interaction attention
code for interaction between agents. Also, implemented the
visual attention code between the agents features and im-
age features so that the model can understand the context
of the image. And, implemented self-attention functions
for each attention modules. He wrote the main.py function
so that the functions could work correctly, and proceeded
to organize the code so that all functions could be written
in one framework. He proposed a model architecture and
implemented a discriminator that compares Predicted-Path
and Ground-truth, the direction of further research. PPT is
completed together.
Saeyoon Oh : He implemented the test code, which is the
process of properly recalling the data required for testing
from the trained model, and the Visualization code, which
makes results into an image. In addition, he implemented
the loss function of the model using the difference value
between the displacements in addition to the displacement.
He also found the best-performing model on CNN used
to extract image features(ex. ResNet, MobileNet). PPT is
completed together.
Kunho Kim : He implemented the LSTM encoder func-
tion that produces features from past path and the LSTM
decoder function that produces output path from final en-
coded features. In addition, he implemented the loss func-
tion of the model using the difference value between the
displacements in addition to the displacement. He also
found the best-performing model on CNN used to extract
image features(ex. ResNet, MobileNet). PPT is completed
together.
Hyojin Sim : She understood and implemented ADE and
FDE functions, which are typical methods of comparing the
performance of Path trajectory. Thanks to her, our models
could be measured the performance numerically. And, im-
plemented self-attention functions for each attention mod-
ules. She also found the best-performing model on CNN
used to extract image features(ex. ResNet, MobileNet).
PPT is completed together.

References
[1] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q.
Xu, A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom. (2019),
nuScenes: A multimodal dataset for autonomous driving., arXiv
preprint arXiv:1903.11027.
[2] Cui, Henggang et al. “Multimodal Trajectory Predictions for
Autonomous Driving Using Deep Convolutional Networks.” 2019
International Conference on Robotics and Automation (ICRA)
(2019): n. pag. Crossref. Web.
[3] T.Phan-Minh et al. ”CoverNet: Multimodal Behavior Predic-
tion using Trajectory Sets”. arXiv:1911.10298 [cs.LG]
[4] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-

Fei,and S. Savarese. Social LSTM: Human trajectory prediction
in crowded spaces. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2016
[5] Nicholas Rhinehart, Kris M. Kitani, and Paul Vernaza. R2P2:A
reparameterized pushforward policy for diverse, precise genera-
tive path forecasting. In The European Conference on Computer
Vision (ECCV), September 2018
[6] Zhao, T., Xu, Y., Monfort, M., Choi, W., Baker, C., Zhao,
Y., Wang, Y., Wu, Y.N.: Multi-agent tensor fusion for contex-
tual trajectory prediction. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 12126–12134
(2019)

6

